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ABSTRACT
Learning commonsense knowledge and conducting commonsense
reasoning are basic human ability to make presumptions about the
type and essence of ordinary situation in daily life, which serve
as very important goals in human-centric Artificial Intelligence
(AI). With the increasing number of media types and quantities
provided by various Internet services, commonsense learning and
reasoning with no doubt are playing key roles in making progresses
for human-centric multimedia analysis. Therefore, this paper first
introduces the basic concept of commonsense knowledge and com-
monsense reasoning, then summarizes commonsense resources and
benchmarks, gives an overview on recent commonsense learning
and reasoning methods, and discusses several popular applications
of commonsense knowledge in real-world scenarios. This work dis-
tinguishes itself from existing literature that merely pays attention
to natural language processing in focusing more on multimedia
which include both natural language processing and computer vi-
sion. Furthermore, we also present our insights and thinking on
future research directions for commonsense.
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1 INTRODUCTION
Commonsense knowledge is known to be shared knowledge across
a particular cultural group of people such that every individual in
this group is expected to know or assume the amount of knowledge.
Commonsense knowledge contains background information about
the spatial, physical, social and temporal properties of entities,
events and circumstances etc., so that it plays an important role
in guiding our daily life. For example, humans will think it stupid
to slam an egg on a stone in order to break the stone, because
it is a commonsense to us that eggs are much more fragile than
stones. Therefore, it is essential for AI systems to learn and utilize
commonsense knowledge so that machines can better understand
human world and act in a more human-like manner. However,
learning commonsense knowledge and utilizing commonsense for
reasoning have been very challenging in the research community,
evidenced by the facts that existing machine learning algorithms
perform poorly compared with human in many tasks requiring
commonsense knowledge.

Human can conduct commonsense reasoning through utilizing
commonsense knowledge, which serves as the core to perception,
understanding and decision making. Figure 1 presents daily situa-
tions of human world, where commonsense knowledge is essential.
As such, the evolution of Artificial Intelligence can seldom be suc-
cessful without the involvement of commonsense reasoning. Al-
though researchers from various communities ranging from natural
language processing (NLP) to computer vision (CV) and robotic are
putting more and more attentions on investigating commonsense
reasoning, endowing machines with the ability of leveraging com-
monsense for reasoning is considered to be a bottleneck of current
Artificial General Intelligence (AGI) [17].

Existing works on commonsense knowledge mainly focus on
two aspects, i.e., acquiring commonsense knowledge and evaluating
commonsense learning or reasoning through various benchmarks.

Acquiring commonsense knowledge. On the one hand, re-
searchers extract commonsense knowledge from some large-scale
unstructured resources such as Wikipedia (the largest and most
popular electronic encyclopedia around the world consisting of over
47 million entries). On the other hand, in order to collect more high-
quality and well-organized commonsense knowledge, researchers
also try to build large-scale commonsense knowledge bases in-
cluding CYC [32], NELL [44], ConceptNet [61], WebChild [67] and
ATOMIC [56] etc.

Evaluating commonsense learning or reasoning.Researchers
have created many benchmarks to test algorithms’ ability to learn
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Figure 1: The first example in the figure describes a read-
ing comprehension task. We humans can easily choose the
answer with background commonsense, but it’s challenging
for machines. Another example is about a traffic situation
which requires traffic commonsense knowledge tomake cor-
rect actions.

commonsense knowledge and conduct commonsense reasoning.
Existing benchmarks can be approximately divided into several
groups [58], i) social commonsense: SOCIAL IQA [57] and VCR [76]
etc., ii) physical commonsense: PHYSICAl IQA [5] and SWAG [77]
etc., iii) temporal commonsense: MCTACO [82], iiii) commonsense
reading comprehension: COSMOSQA [26]. Some other benchmarks
may involve more than one type of commonsense knowledge, for
example, COMMONSENSEQA [65] takes both social and physical
commonsense into consideration.

To improve the performance of machine learning algorithms in
various benchmarks, a lot of strategies incorporating commonsense
knowledge into reasoning tasks have been proposed. In partic-
ular, self-supervised learning [20, 23] learns commonsense from
large-scale unstructured corpus through different pre-training tasks.
Relational reasoning [35] infers the relationships between differ-
ent entities from the topology of knowledge graph that contains a
wealth of commonsense knowledge. Other methods [39] combine
self-supervised learning and relational reasoning together, aiming
to keep the advantages of both strategies. These strategies have
wide applications in various machine learning tasks such as visual
segmentation, video description and recommender systems etc.

To summarize, in this paper we introduce the basic concept of
commonsense knowledge and commonsense reasoning, present
main commonsense resources and benchmarks, survey recent ad-
vances on commonsense learning and reasoning, and discuss sev-
eral practical applications with commonsense knowledge. Different
from existing literature with similar topic which focuses mainly on
natural language processing, this work starts from the view related
to the multimedia community, focusing on both natural language

processing and computer vision. Last but not least, we further share
our insights on future research directions for commonsense.

2 COMMONSENSE RESOURCES
On the road towards Artificial General Intelligence (AGI), one of
the main bottlenecks is that machines lack the reasoning ability
with commonsense knowledge [17]. To tackle this challenge and
endow machines with the ability to learn and exploit commonsense
knowledge, researchers built plentiful commonsense resources in
the past decades. During the time when the Internet was thriving,
people created huge amounts of raw data on the web that con-
tains commonsense knowledge implicitly. We refer to this kind
of commonsense resources as unstructured commonsense corpus.
Based on that, researchers further generalize and sort out these
resources to formwell-organized, easy-to-use commonsense knowl-
edge bases.

2.1 Unstructured Commonsense Corpus
Since electronic records have been available, a variety of unstruc-
tured resources that implicitly contain commonsense knowledge
have emerged, such as English Wikipedia, BookCorpus [83], etc.
English Wikipedia is the English-language version of the freely
edited online encyclopedia Wikipedia. It is founded on 15 January
2001 and now consists of more than 6,136,733 articles, covering
almost all aspects of human knowledge. BookCorpus is a large-scale
text corpus which consists of 11,038 unpublished books from 16
different genres and 984 million words. These resources of book
can provide very rich, descriptive text that convey high-quality
semantics. And there are also some multi-modal corpora which
also include images or videos. For example, Coco [13] is a data con-
tains about 200000 images, each of which usually has five textual
descriptions. ImageNet [18] is a dataset built upon the backbone of
the WordNet [43] structure. The dataset originally aims to populate
the majority of the 80,000 synsets of WordNet with an average of
500-1000 clean and full resolution images. And so far, it includes
over 14 million images and over 21000 synsets indexed. The Deep-
Mind Kinetics human action video dataset is a video dataset which
describes 400 human action classes with over 400 video clips for
each action[28].

Unstructured commonsense corpus includes all the texts, im-
ages, videos and other media which reflect commonsense in the
human world. However, these unstructured corpus are difficult
to be directly incorporated into downstream reasoning tasks. A
mainstream approach that performs well on capturing the implicit
commonsense knowledge is to pre-train neural models on the large-
scale unstructured textual corpus and adapt to downstream tasks
through fine-tuning. Recent methods based on pre-trained models
such as BERT [19], GPT [51] and ELMo [49] have obtained remark-
able results in many commonsense reasoning NLP tasks. And other
models(VL-BERT [62],VisualBERT [34],etc.) trained on multimodal
corpus obtain state-of-the-art results in some multi-modality tasks.
Another popular approach is to explicitly extract commonsense
knowledge from the unstructured corpus and organize them in
the form of structured knowledge base, as shown in the following
subsection.
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Figure 2: The development timeline of the several common-
sense knowledge bases [58].

2.2 Well-organized Commonsense Knowledge
Base

Researchers have been devoted to building structured large-scale
commonsense knowledge bases, aiming to provide practical and
high-quality commonsense knowledge for various downstream
applications. We show a development timeline(Figure 2) of several
popular knowledge bases and present a detailed description for
each of them, respectively.

2.2.1 Cyc. Cyc [32] is one of the pioneers of commonsense knowl-
edge base. Cyc expresses commonsense in a way of LISP-style
logic [31]. It presents ontological relationships between objects,
using so-called CycL language. Specifically, the concept names in
Cyc are CycL terms or constants(individuals, Collections, Func-
tions and Truth Functions) and facts about concepts are asserted
using certain CycL sentences. OpenCyc is an open source version
of Cyc knowledge base, providing API and downloadable dataset
for developers and users. ResearchCyc [53] is a free version of
Cyc released to the research community. In addition to containing
the categorical information in OpenCyc, a significant amount of
semantic knowledge was added to ResearhCyc.

2.2.2 ConceptNet. ConceptNet [61] is a frequently used common-
sense knowledge base, which represents daily words and phrases
in the form of graph, with a mass of concept nodes connected by
kinds of relations. ConceptNet is originally a representation for the
knowledge collected by Open Mind Common Sense (OMCS), which
leverages a interactive website to acquire free text commonsense
assertions from online visitors. The latest version, ConceptNet 5.5,
consists of over 21 million edges and over 8 million nodes in more
than 85 languages. ConceptNet5.5 incorporates knowledge from
other crowd-sourced resources, especially data mined from Wik-
tionary and Wikipedia. Meanwhile, it links to other knowledge
graphs like WordNet [43]and Freebase [6].

2.2.3 NELL. Commonsense knowledge can change over time with
the development of human society, as a result, it’s crucial to update
knowledge base. The Never-Ending Language Learner(NELL) [44],
a never-ending learning engine, can automatically learn knowledge
from web contents. Since January 2010, it has been reading the
web and learning twenty-four hours a day. NELL has built a knowl-
edge base with over 80 million confidence-weighted beliefs. All
belief triples, such as “play(MapleLeafs,hockey)”, own an associated
confidence.

2.2.4 WebChild 2.0. WebChild 2.0 [67] is a large, clean, and se-
mantically organized commonsense knowledge base, with over 2
million disambiguated concepts and activities, connected by over
18 million assertions. It automatically extracts commonsense from

Web content (such as Google’s large Web N-Gram) and other text
resources. The knowledge base consists of fine-grained common-
sense properties, connecting noun senses with adjective senses by
a variety of relations (19 types) such as “hasSize”, “hasAbility”, etc.

2.2.5 ATOMIC. ATOMIC [56] is an atlas of machine common-
sense, which focuses on inferential if-then knowledge rather than
taxonomic knowledge. It describes everyday events in natural lan-
guage, in the form of nine typed if-then relations. The commonsense
knowledge graph consists of over 300k events associated with 877k
inferential relations. ATOMIC applies a crowd-sourced method to
collect free-form text annotations by asking online visitors to write
answers to a question about a specific event.

Overall, these knowledge bases provide explicit, clean and well-
organized commonsense knowledge in general, but they differ
with each other in many aspects, such as the way of construction,
the knowledge formats and scopes, etc. As for the way of knowl-
edge base construction, Cyc leverages experts to add commonsense
knowledge, while the others, ConceptNet, NELL, WebChild and
ATMOIC extract knowledge from non-experts knowledge written
in natural language. Table 1 present comparisons of knowledge
representation format.

3 BENCHMARKS
Since the early 2000s, especially recent years, researchers have
been eagerly devoted to creating benchmarks for commonsense
reasoning. An excellent benchmark can adequately examine ma-
chine’s ability to learn commonsense knowledge and reason with
commonsense already mastered. Most benchmarks focus on natural
language processing, but recent years visual benchmark such as
VCR emerged, prompting the development of multi-modal models.
Wewill give an overview(Table 2) of some existing benchmarks, and
then describe several latest benchmarks in detail. Figure 4 presents
some concrete examples of each benchmark. We can see it is ef-
fortless for humans to solve these reasoning problems, however,
it is still challenging for machines. For example, as shown in Fig-
ure 4, the COMMONSENSEQA question says “Where can I stand
on a river to see water falling without getting wet?”. We humans
can easily choose the correct answer - “bridge”, because we know
bridge is over the water thus we will not get wet. But the question
is difficult for machines without commonsense knowledge.

According to the type of commonsense knowledge required for
reasoning, benchmarks can be approximately classified into four
categories: Physical [5, 77, 78, 80], Social [27, 45, 46, 54, 55, 57, 76],
Temporal [82] and Reading Comprehension [26, 29, 79], as shown
in Figure 3. In addition, some benchmarks begin to concern about
hybrid commonsense [4, 65].

3.1 Social Commonsense
Social commonsense is the basic knowledge about social situations
such as interpersonal interaction. Social commonsense is critical
for humans’ ability to reason about mental states of others and their
likely actions [22], and it is this ability that enables us to navigate
various of social situations [2].
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Table 1: Comparisons of knowledge representation format.

Representation format Instance
Cyc symbolic logic #$capitalCity #$France #$Paris
ConceptNet triple IsA(cook,person)
NELL triple play(MapleLeafs,hockey)
WebChild 2.0 triple <car, faster than, bike>
ATOMIC If-then assertion If X repels Y’s attack,then Y feels ashamed...

Figure 3: A classification of benchmarks according to the
type of commonsense [58].

3.1.1 SOCIAL IQA. SOCIAL IQA [57] is the first large-scale bench-
mark which concentrates on commonsense reasoning about social
situations. It consists of 38,000 multiple choice questions. SOCIAL
IQA leverages a crowd-sourced method to collect social common-
sense questions along with corresponding both correct and wrong
answers. Researchers further take SOCIAL IQA as a resource of
commonsense knowledge for transfer learning, which have proved
effective in some other benchmarks.

3.1.2 VCR. Visual understanding is a significant challenge for
AI systems, which goes beyond simple recognition to advanced
cognition-level understanding. For human beings, with a rapid
glance at a visual scene, we not only can effortlessly recognize the
people and objects in the scene, but also can infer the people’s goals
and mental states, which is not visually obvious. VCR [76] is a large-
scale dataset about Visual Commonsense Reasoning, consisting of
290k multiple choice question-answer problems derived from 110k
movie scenes. The problem not only requires machine to correctly
answer a challenge question about an image, but also asks for a
rationale which can justify the answer.

3.2 Physical Commonsense
Physical commonsense consists of physical properties of everyday
objects such as shape andmaterial, and it also consists of knowledge
about affordances and manipulation of these objects. For example,
PHYSICAL IQA [5] is a commonsense reasoning benchmark con-
cerning physical aspect of everyday events. The objective is to test
whether AI systems can tackle physical commonsense questions
without experiencing the real physical world. The dataset consists
of over 16,000 question-answer pairs for training, about 2,000 pairs
for development and 3,000 pairs for test.

Figure 4: Illustrations of the samples of several bench-
marks [5, 26, 57, 65, 76, 82].

3.3 Temporal Commonsense
Temporal commonsense consists of knowledge about temporal
phenomena, for example: how long an event takes? how often
an event occurs? Temporal commonsense that people rarely ex-
press obviously is crucial for understanding daily events. MC-
TACO [82](multiple choice temporal commonsense) is an important
benchmark which focuses on temporal commonsense reasoning.
It consists of 1,893 questions and 13,225 question-answer pairs.
Founders clarify all the questions into five temporal reasoning
types: duration, temporal ordering, typical time, frequency and sta-
tionarity. MCTACO is constructed via crowd-sourcing on Amazon
Mechanical Turk to collect questions and corresponding answers
and distractors, with elaborate guidelines to guarantee high quality.

3.4 Commonsense Reading Comprehension
Reading comprehension requires the ability to understand clues
explicitly stated in text and to read between the lines with back-
ground knowledge. For example, COSMOS QA [26] (Commonsense
Machine Comprehension) is a dataset consisting of 35,588 reading
comprehension problems which require background commonsense
about the causes and effects of events. It also uses a crowd-sourcing
way (Amazon Mechanical Turk) to collect questions and answers.

3.5 Hybrid Commonsense
Many benchmarks refer to more than one type of commonsense,
such as COMMONSENSEQA [65], which concerns both social and
physical commonsense knowledge. It is a challenging benchmark in
the form of question answering, which consists of 12,247 questions.
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Its construction process first extracted a subgraph from Concept-
Net centered on a single concept, and then asked crowd-workers
to create corresponding natural language questions and answers
according to the subgraph.

4 INCORPORATING COMMONSENSE
KNOWLEDGE IN MULTIMEDIA

With the aforementioned resources and benchmarks, researchers
attempts to integrate human-centric commonsense knowledge into
ML systems for deeper understanding of the society and the world.
There are two mainstream methods for incorporating common-
sense knowledge: one is self-supervised learning for acquiring com-
monsense knowledge from unstructured corpus, and the other is
relational reasoning on structured commonsense knowledge bases.
Furthermore, combining the above two ideas, some hybrid methods
have achieved promising results in many benchmarks recently. We
list the overall methods in Figure 5

4.1 Self-supervised Learning on Unstructured
Corpus

For the implicit commonsense knowledge hidden in the large-scale
unstructured multimedia corpus, manually annotating and extract-
ing knowledge would consume unacceptable efforts. Therefore,
researchers tend to self-supervised learning, which leverages the
information of the corpus itself to construct pseudo tags for train-
ing. Self-supervised learning could provide better representations
and transfer the commonsense knowledge learned from pre-trained
tasks to many downstream tasks.

4.1.1 Pre-training from Language Corpus. At present, common-
sense knowledge is mainly represented as texts. The most common
self-supervised pre-training task for texts is called language model
(LM), where some tokens are expected to be recovered from their
contexts. Early pre-trained language model can be traced back to
word2vec [41, 42], which converts every word into an unique em-
bedding. It has two training paradigms CBOW and Skip-gram as
simple version of LM: CBOW method predicts current token from
its context tokens, and Skip-gram method predicts context tokens
from the current token. Here, the context tokens are taken from a
fixed-length sliding window. To better handle polysemy and con-
sider long-term language dependency, ELMo [49] predicts current
token from all history tokens with a 2-layer bidirectional LSTM,
while GPT [51] replace the LSTMs with stacked transformers [68]
and achieves superior performances.

While LM is a default choice, researchers begin to design var-
ious pre-training tasks for self-supervised learning, which opens
new doors for language understanding from large-scale corpus.
BERT [19], a landmark pre-trained model, designs the tasks of
masked language model (MLM) and next sentence prediction (NSP).
While MLM randomly mask some tokens and expect the model to
recover them, NSP predicts whether a sentence is the next sentence
of the input sentence in the raw corpus. The last two years have wit-
nessed many pre-training tasks, such as full sentence training [37],
sentence order prediction (SOP) [30], and permuted language mod-
eling (PLM) [73], which aims to improve the performance of pre-
trained models and better obtain implicit knowledge.

Once pre-trained, the models can be seen as implicit knowledge
library which could also provides commonsense knowledge. As
most commonsense benchmarks are formulated as question answer-
ing tasks, pre-trained models should accept QA pairs as inputs. For
example, when BERT deals with a question with four alternative
answers, four inputs will be constructed by concatenating the ques-
tion and every candidate answer. For each input, A [CLS] symbol is
inserted before the text, a [SEP] symbol is used to separate question
and answer. So the final input form for BERT is “[CLS] question
[SEP] answer [SEP]”, and the output vector corresponding to the
symbol is used as the semantic representation of the whole text,
which can be used to predict the correct answer. When applied to
different downstream tasks with different forms of input and out-
put, researchers usually add adaptation layers into the model, and
fine-tune it layer by layer to avoid catastrophic forgetting. Another
idea is to unify all downstream tasks into text-to-text format, which
is adopted by T5 [52] and GPT-3 [8]. The difference is that GPT-3
is very hard to do fine-tune due to the huge amount of parameters
(more than 170 billion) . Therefore, it directly takes the training
data and test data of downstream tasks as the input of the model,
and also achieves good results in many tasks, showing the powerful
ability of large-scale pre-training model.

Generally speaking, pre-training on larger corpus would achieve
better performance and incorporatemore commonsense. ELMo uses
1B Word Benchmark [11] for pre-training, which contains about
1 billion words. GPT uses Bookcorpus for pre-training, with more
than 10000 books and more than 70 million sentences. BERT uses
Bookcorpus [84] and English Wikipedia with a size of about 13GB,
while XLNet uses more than 100GB of corpus. T5 uses Colossal
Clean Crawled Corpus captured from the Common Crawl website
with a size of 750GB. GPT-3 uses a larger data set for training, and
the whole English Wikipedia only accounts for 0.6% of its training
data. These unstructured but large-scale text corpus contains vari-
ous commonsense and reflects human intelligence, which deserve
more efforts for further navigation.

4.1.2 Pre-training from Multimodal Corpus. While the common-
sense knowledge is mainly represented as texts, the multimodal cor-
pus, commonly visual-language corpus, is larger and more general
in multimedia. While they are more difficult in processing, visual-
language corpus provides more choices for pre-training tasks. For
example, in addition to the aforementioned MLM, researchers de-
signs the tasks of masked region feature regression, masked region
feature classification, and sentence-image alignment. The first two
tasks cover the feature vectors of region randomly, but masked
region feature regression expect the model to recover them di-
rectly, while masked region feature classification expect the model
to predict the labels after the vectors pass through R-CNN[24].
Sentence-image alignment randomly replaces image or text for the
input image-text pair, and finally predicts whether there is a corre-
sponding relationship between the image and text, which could be
seen as a binary classification task.

Unlike uni-modal pre-training from text corpus, visual-language
pre-training must be able to handle visual representations, which
are usually the region of interest (RoI) in the images. Another key
challenge is to fuse visual and text information in visual-language
pre-training. There are two mainstream fusion methods. The first
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Table 2: An overview of the commonsense benchmarks in recent years.

Year Size Type(and modality) Metric State-of-the-art Human
COMMONSENSEQA [65] 2019 12,247 questions social and physical(text) accuracy 79.1 88.9
SOCIAL IQA [57] 2019 38,000 questions social(text) accuracy 83.2 88.1
PHYSICAL IQA [5] 2020 over 21,000 QA pairs1 physical(text) accuracy 90.1 94.9
MCTACO [82] 2019 1,893 questions temporal(text) exact match 59.4 75.8
COSMOS QA [26] 2019 35,588 questions reading comprehension(text) accuracy 91.8 94.0
VCR [76] 2019 290k questions social(text+vision) accuracy 63.0(Q->AR) 85.0(Q->AR)

Figure 5: Methods of incorporating commonsense knowl-
edge in multimedia. Image taken from [7, 13, 35, 39]

one includes VisualBERT [34], Unicoder-VL [33], VL-BERT [62],
B2T2 [1], UNITER [14], VideoBERT [64], etc., They combine cap-
tion tokens with visual feature embedding as input to transformer,
aligning and fusing the image and language information at the
beginning. The second is that the image and text are encoded in-
dependently by the encoder of transformer, and then fused by a
co-attention mechanism module. The representative models are
VilBERT [38], LXMERT [66], CBT [63], etc..

Pre-training of other modalities is similar to visual-language
pre-training. For example, SpeechBERT [16] in audio-language pre-
training, which is a cross-modal transformer-based pre-trained
language model, encodes audio and text with a single transformer.

Unstructured multimodal corpus is usually some datasets col-
lected for other visual-language research areas. VisualBERT is pre-
trained on COCO [13], which contains about 200000 images with
five descriptions per image. ViLBERT, B2T2, Unicoder-VL are pre-
trained on Conceptual Captions [59], which contains 3 million
images with descriptions. VL-BERT not only uses Conceptual Cap-
tions for image related pre-training, but also uses BooksCorpus
and English Wikipedia for language related pre-training. In video-
language pre-training, both VideoBERT and CBT are pre-trained

on Cooking312k [64], which is a “cooking” related video set with
312k videos and a total of 23186 hours.

4.2 Relational Reasoning on Structured Corpus
As mentioned in Sec. 2.2, the well organized commonsense knowl-
edge bases are highly structured mainly in the form of knowledge
graph. Knowledge graph contains a large number of commonsense
knowledge in the form of (ℎ, 𝑟, 𝑡), which is a triplet of head, relation
and tail. Here, head and tail denotes two entities. In contrast to
the pre-training methods with implicit commonsense knowledge,
relational reasoning on structured corpus can make explicit use of
the commonsense and get better interpretability.

4.2.1 Rule-based Methods. Rule-based relational reasoning is to
infer new relationships from existing relationships according to rea-
soning rules. In the past, reasoning rules were mainly constructed
manually, which could not cover all reasoning rules. Currently,
the researchers can automatically extract inference rules from the
knowledge graph so as to carry out logical reasoning. Typical meth-
ods include inductive logic program (ILP) [50] and association rule
mining (ARM) [21]. While rule-based method will provide a variety
of reasoning rules automatically, which could be used for common-
sense relational reasoning on the knowledge graphs, it would fail
on the rules that have not been seen.

4.2.2 Embedding-based Methods for Simple Relations. Embedding-
basedmethodsmaps entities and relationships into low-dimensional
space, then a scoring function is defined to measure the rationality
of the facts. To model simple relations in commonsense, embedding
models can be divided into two types with regard to different scor-
ing functions: translation distance model and semantic matching
model. Translation distance models like TransE [7], TransH [69],
and KG2E [25] use the distance-based score functions to measure
the rationality of a commonsense fact by the distance between two
entities. Semanticmatchingmodels like RESCAL [48], DistMult [72],
and HolE [47] use similarity-based score functions to measure the
credibility of facts by matching the underlying semantics of entities
and the relationships contained in the vector space representa-
tion. After obtaining the low-dimensional distributed embedding of
knowledge graph, some simple relationships can be inferred by the
embedding. Taking TransE [7] as an example, it takes advantage of
the translation invariance of the word vector space and considers
that the relationship vector carries the potential features of head

1A question combined with its arbitrary candidate answer can be called a Question-
answer(QA) pairs.
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entity to tail entity. TransE regards the relation vector 𝑟 as the trans-
lation between the head entity vector ℎ and the tail entity vector
𝑡 , that is, ℎ + 𝑟 = 𝑡 . For example, 𝐵𝑒𝑖 𝑗𝑖𝑛𝑔 +𝑇ℎ𝑒𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑂 𝑓 = 𝐶ℎ𝑖𝑛𝑎.
Therefore, the distance between 𝑡 −ℎ and 𝑟 can be used to estimate
the possibility of the relationship 𝑟 between ℎ and 𝑡 . For example,
when the model find that𝐶ℎ𝑖𝑛𝑎−𝐵𝑒𝑖 𝑗𝑖𝑛𝑔 ≈ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎−𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛,
it can infer that Washington is the capital of America.

In summary, these embedding-based methods will map the struc-
ture of a graph to a low dimensional space, where the relationships
between vectors are predicted. Pure embedding-based methods
have performed well in some tasks, but fails in multi-hop common-
sense reasoning.

4.2.3 Embedding-based Methods for Complex Relations. When the
relationship between two entities is complex, relational reasoning
may have to go throughmany other entities on the graph. Therefore,
it is hard to capture the relationship between two entities without
the information of their neighbors and other entities on the route
between them. For example, DeepPath [71] applies reinforcement
learning to find the best path to link two entities. KagNet [35]
looks for paths with lengths shorter than 4 between two entities to
construct a schema graph. The graph is encoded with GCN and each
path is encoded with LSTM. The hierarchical path based attention
mechanism is used to select the path that has greater impact on the
QA problem for reasoning. They all solved the multi-hop reasoning
problem very well.

4.3 Hybrid Methods
While self-supervised learning methods are pre-trained on unstruc-
tured corpus to provides implicit commonsense knowledge, rela-
tional reasoning methods works explicitly on structured common-
sense knowledge bases. To combine the advantage of both sides,
researchers seek to propose some hybrid methods for more effective
commonsense learning and reasoning.

Lv et al. [39] leverage pre-trained XLNet on graph reasoning.
They automatically extract evidence from heterogeneous knowl-
edge sources, that is, from both ConceptNet and Wikipedia articles.
Based on XLNet, the distance between words is refined by the struc-
ture of graph. After obtaining the contextual word representation
of each word, they further use the structural information of the
graph to make inference at the graph structure level.

Some studies use knowledge graphs for pre-training. KG-BERT [74]
modifies the input of the BERT to make it suitable for the triplets in
knowledge graphs. ERNIE-THU [81] first identifies the named enti-
ties in the text, and then matches the mentioned entities with those
in the knowledge map. The structures of knowledge graphs are en-
coded by knowledge embedding algorithm, and multi-information
entities are embedded as the input of ERNIE. However, it does not
use the relational information in the knowledge graph. K-BERT [36]
injects the triplet information into the sentence to form a sentence
tree with rich background knowledge, and it uses visible matrix to
introduce the structure information of tree into the model.

As a conclusion, self-supervised learning methods have a wider
source of corpus, and do not need manual annotation. It can com-
plete a variety of downstream commonsense reasoning tasks through
pre-training and fine-tuning, but the knowledge are provided im-
plicitly in the pre-trained models. Relational reasoning methods

take advantage of the valuable structural relationships between
entities and makes explicit reasoning, which is better in accuracy
and interpretability, but they are restricted by the size of available
commonsense knowledge graphs. As a promising research direc-
tion, hybrid methods that combines self-supervised learning and
relational learning are expected to make use of both large-scale
corpus and explicit reasoning procedure.

5 APPLICATIONS
As incorporating commonsense knowledge into current machine
learning systems can provide more powerful reasoning ability and
interpretability, many downstream multimedia applications, includ-
ing recommender systems, visual understanding, and robotics, etc.
have been benefited from deep understanding of commonsense
knowledge.

5.1 Recommender System
Recommender systems recommend products to users according to
their preferences. Usually, there are many items and many users
in the environment, and the system will give users a clear rea-
son to recommend, which requires the support of commonsense
knowledge.

Catherine and Cohen [9] proposed to use a series of manual
rules for reasoning and recommendation. Ma et al. [40] proposed a
new joint learning framework, which combines the induction of
interpretable rules in knowledge graphs with the construction of
rule-guided neural recommendation model. The framework encour-
ages the two modules to complement each other when generating
valid and interpretable recommendations. Xian et al. [70] proposed
a symbolic reasoning method called NSER, which first interprets
the user behavior in a coarse-grained way, and then generates a
more fine-grained explanation based on the inferential path of the
knowledge graph. It has achieved good results in four evaluation
metrics: normalized discounted cumulative gain, recall, hit rate, and
precision.

5.2 Visual Understanding
Visual understanding is an important part of computer vision area.
Commonsense knowledge could benefit many downstream visual
understanding tasks such as image retrieval, scene graph generation,
emotion reasoning [60], and so on.

Nowadays, the search of documents still relies mainly on text
information and fails to make good use of images in documents.
Chowdhury et al. [15] proposed Know2Look, which integrates
visual commonsense knowledge to get more accurate picture de-
scription. They can use text and image to retrieve documents at the
same time, and get better results than text-only methods.

Scene graph generation is to create a graph to represent the rela-
tionship between different objects in the scene. However, sometimes
the complex environment will lead to the scene graph violating the
laws of the real world, it can be corrected by the commonsense.
Chen et al. [12] uses statistical methods to learn commonsense from
training data, but it is limited to the frequency of scene relations
appearing in data. Zareian et al. [75] extended the transformer
model to incorporate the structure of the scene graph and trained a
global-local attention transformer, which can automatically acquire
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the visual knowledge such as affront and intuitive physics, and can
be applied to any scene graph generation model.

5.3 Robotics
Robot is a kind of intelligentmachinewhich canwork autonomously,
which has the basic characteristics of perception, decision-making
and execution. To work in a complex real environment, robots need
to have some commonsense.

For example, when you assign a robot to perform a task, the ro-
bot needs to select the appropriate tool in the environment. Bansal
et al. [3] propose a neural model ToolNet, which use graph neu-
ral network to encode the current environmental state and goal-
conditional spatial attention to predict the most appropriate tool.
When you need a robot to find something, it also requires common-
sense to guess where it is in the room. Chaplot et al. [10] propose a
modular system called Goal-Oriented Semantic Exploration , which
learns the semantic prior knowledge of relative arrangement of
objects in the scene and uses them to explore effectively.

6 FUTURE DIRECTION
6.1 Definition of Commonsense
The definition of commonsense knowledge shown in Sec. 1 is pop-
ular in the domain of machine learning. However, there are some
other kinds of definitions. For example, in the philosophical sense,
the beliefs and thoughts commonly possessed by rational and nor-
mal persons also belong to commonsense knowledge. To make
machine commonsense reasoning more human-like and human-
centric, commonsense knowledge should also include simple modes
of reasoning shared among most people such as syllogism and ana-
logical reasoning. A syllogism is an argument with three parts: the
major premise, the minor premise and the conclusion. For exam-
ple, when the major premise is “All people will die” and the minor
premise is “Socrates is a man”, humans can easily conclude that
“Socrates will die” even though they don’t know the concept of syl-
logism. Analogical reasoning is the process of inferring one object’s
attributes by comparing it to another similar object. For example,
hitting your head with a stone will make you feel painful, so we
can effortlessly infer that hitting with a watermelon is the same,
because watermelon is also hard. Maybe existing commonsense
reasoning methods can solve syllogism and analogy problems by
leveraging semantic and syntactic knowledge, but we believe it’s
advantageous to directly incorporate these thinking commonsense
into downstream tasks.

6.2 Commonsense in Multimedia
Today, we live in a multimedia world constructed by a large number
of multimodal contents (text, image, video, audio, sensor data, etc.),
which are highly relevant in specific events and applications. At
present, multimodal commonsense knowledge are mostly implicit
captured in pre-trained models on unstructured corpus, as shown
in Sec. 4.1.2. However, the multimedia community has not yet seen
available large-scale structured multi-modal knowledge graph with
explicit commonsense knowledge, which is challenging not only in
the data collection cost but also in the definition of the structure
of multimodal commonsense knowledge. In the future, researchers
can explore the construction of multimodal knowledge graph and

use it for relational reasoning, or combine it with pre-training to
give full play to their advantages.

6.3 Explicit Commonsense Reasoning
One of the core advantages of incorporating commonsense knowl-
edge into the model is stronger interpretability, which could be
user-friendly in many downstream tasks. However, this aspect is
not good enough at present. Although self-supervised learning ob-
tain commonsense knowledge from large-scale corpus, the huge
amount of parameters and the black-box architecture make re-
searchers unknown about what it has learned and how to explicitly
apply it to downstream tasks. In the domain of relational learning
from structured corpus, most embedding-based methods would lost
a lot of accurate and structured semantic information and weaken
the unique advantages of knowledge graph. Machine learning based
on statistics can only be weak artificial intelligence, which is good
at finding correlation but weak in logical reasoning. Therefore, on
the way towards artificial general intelligence, it is worth exploring
to make explicit commonsense reasoning with high interpretability.

7 CONCLUSION
This article presents a comprehensive survey on commonsense
learning and reasoning – how the AI systems acquire common-
sense knowledge and utilize commonsense for reasoning. In this
survey, we first summarize the commonsense resources and eval-
uation benchmarks, then we review mainstream state-of-the-art
methods for incorporating commonsense knowledge. We also dis-
cuss several popular applications with commonsense. Throughout
this article, we focus more on multimedia commonsense in contrast
with existing literature. In addition to the descriptive review, we dis-
cuss several promising directions for future research. In particular,
we suggest incorporating other modes of commonsense knowledge,
e.g. syllogism, into downstream tasks, as well as multimedia knowl-
edge base construction and interpretable commonsense reasoning.
We believe this article will help readers to build a big picture of
commonsense learning and benefit the field for future research.
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